Requirements
Eng1 Group 29

Adam Hewlett
Ani Thomas
Dan Kirkpatrick
Dominik Hagowski
Matthew Crompton
Niko Chen

Introduction
Prior to the development and implementation of code, our team set out project requirements
as this would:

-aid in the development process.
-help to keep the project on track with stakeholders’ goals
-prevent the team from working on any unnecessary features

This was done at the start of the project to avoid common mistakes that had been outlined
through research, such as eliciting unbounded and vague requirements, and the common
tendency to make assumptions. [1]

The requirements for this project are broken down into 3 categories based on the research
our team did: User, Functional, and Non-Functional requirements. [2]

Throughout the process of identifying and formatting requirements, the definition of a
well-defined requirement was focused on: A well-defined requirement is a statement of
system functionality that must have proof of its validation and must be met to achieve a
customer’s objective for a system. [3]

How were requirements elicited and negotiated
The requirements for the project were elicited and negotiated through analysing the product

brief and a meeting with the client, where we asked for clarifications for certain points that
would be needed before outlining requirements. After this, a brainstorming session took
place using the notes from the interview as well as the project brief. We also looked at the
requirements of similar projects and games such as ‘Overcooked’ in order to get a better
understanding of the requirements to create a successful game. [4]

With this information, a Single Statement of Need (SSON) was created alongside a final list
of User Requirements for the project. Our SSON is as follows:

SSON

The system should enable the consumer to play a single-player game that requires
managing the staff around a kitchen, who will be preparing various dishes requested by
customers coming into the Piazza Restaurant, that the user will have to prepare in a certain
time limit, otherwise they will lose reputation.

The SSON acted as a guide for maintaining focus on the system requirements that would be
used in the Architecture plan

Why requirements are presented as they are
To format the elicited set of requirements, the ‘IEEE Guide for Developing System

Requirements Specification’ provided insight into a sensible format and the necessary level
of detail for the requirements.

To distinguish types of requirements, colours were used to highlight the differences, and
make the reflection process easier. The standard tabular approach was decided upon as it is
the easiest to read and reread.

User Requirements

The game should be playable May result in the game Shall
and enjoyable for the target being considered boring in
audience a effort to please everyone
The game should contain a May lead to certain dishes | Shall
variety of dishes to prepare being harder to prepare

then others, so some

order harder
Cook should be controllable by | May not know which cook | Shall
the user to kitchen they are controlling
There should be at least 2 Scenarios may be to hard | Shall
cooks in any scenario with only one cook
Controls should follow standard | User may not check the May
conventions or be explained controls and blindly follow
and easy to use standard convention
Game should have different Game may end up being Shall
difficulty scenarios to difficult, leading to user

quitting
Each scenario should not take | Game may become boring | Shall
to long and repetitive if scenarios

take too long
The game should follow The conventions could be | May
standard conventions followed where it doesn’t

make sense in the game
The scenario is passed if all The user may not know Shall
customers are served the requirements to pass

the scenario

Systems Requirements - Functional
Requirement ID Description Risks and Design

Assumptions

Requirement

ingredient stations e.g salad
basket.

they do not get mixed up.

FR_Prepartion_S | Each should have a number of | Some recipes may be UR_DISHES
teps steps to prepare it more complex than others
E.g cutting, cooking ect. making it harder to
complete in the same
timeframe
FR_Ingredient_St | Ingredients should be able to Stations must be easily UR_DISHES
ations be gotten by the cook from distinguishable so that UR_COOK

Requirement ID

Description

Risks and
Assumptions

Design
Requirement

t

the cook interact with objects
and tasks

to interact with

FR_PREP_STATI | Stations for food preparation User may not know what | UR_DISHES
ON should be available for the each station is for UR_COOK
cook to interact with
FR_Cook_Move Player should be able to move | User must know the UR_COOK
cook around control scheme in order to | UR_CONTROL
do this
FR_Cook_Interac | Player should be able to make | User may not know what UR_COOK

FR_UI

There should be a Ul
displaying the recipes that
need to be completed, and time
left

Ul may clutter the screen

UR_PLAYABLIT

if too large and obstruct Y
the game. UR_CONVENTI
ONS

FR_CUSTOMER

Customers should arrive asking
for different dishes

Orders from the
customers may not be
clear for the user

UR_DIFFCULTY

FR_RANDOM

Dishes that the customer ask
for should be random

Dishes may be all the
same by chance making
the game boring

UR_DIFFUCLTY

FR_TITLE_SCEE
N

The game should be able to
launch into a title screen

The player may not know
where to navigate to from
the title screen

UR_CONVENTI
ONS

FR_AREA_BOUN
DARIES

The user should only be able to
move the cook certain places
and collide with counter objects

Make sure the boundaries
for the game are clear

UR_CONVETNTI
ONS

FR_ANIMATIONS

There should be animations in
the game, such as cutting up
lettuce or walking

Assume that the hardware

UR_PLAYABILIT

is capable of playing the Y

game along with the

animations
FR_MUSIC The game should have Background music may UR_CONVENTI
background music to make it distract the player ONS
more enjoyable
FR_SERVE The dishes should be able to User may not understand | UR_SUCCEED
be severed to the customers by | how to serve the food
placing them on a counter
System Requirements - Non-Functional
Requirement | Description User Requirement | Fit Criteria | Risks and
ID Assumption
S
NFR_RESPON | The system should UR_PLAYABLE The response | Assumes the

SIVE

respond quickly to user

should be no

user gives a

Requirement | Description User Requirement | Fit Criteria | Risks and
ID Assumption
]
input from the keyboard slower then valid input
0.5s after the
button press
NFR_INFORM | The user should be UR_PLAYABLE Ul changes Player may
ATION TIME informed of any changes should take not notice the
= quickly no longer change
then 0.5s
NFR_ANIMATI | Animations should run UR_PLAYABLE Game should | Assumes
ON smoothly run at min hardware can
30FPS run at this
speed
NFR_GRAHIC | Graphics should look like | UR_PLAYABLE Player should | Player may
S the objects that they be able to not recognise
represent identify all the object
assets

Constraints

The game should not contain explicit or graphic content, such as blood or gore,
and should be suitable for any user in the target audience.

The game must be programmed in Java.

Department computer

The game should be able to run on any University of York Computer Science

The game must use colours with high contrast to ensure all users can play it

References
[1TIEEE Guide for Developing System Requirements Specifications’, IEEE Std 1233, 1998
Edition, pp. 14, Dec. 1998.

[2] D.Thakur, (2013, November.23), What is Software Requirement? Types of Requirement.

[3TIEEE Guide for Developing System Requirements Specifications’, IEEE Std 1233, 1998
Edition, pp. 11, Dec. 1998.

[4TIEEE Guide for Developing System Requirements Specifications’, IEEE Std 1233, 1998
Edition, pp. 16, Dec. 1998.

