
Architecture
Eng1 Group 29

Adam Hewlett
Ani Thomas

Dan Kirkpatrick
Dominik Hagowski
Matthew Crompton

Niko Chen



Architecture
Representation of the Architecture
We opted to use both a Behavioural Sequence Diagram[1](Chart1) and a Structural Class
Diagram[2](Chart 2) in our representation of the architecture. We chose each diagram as
they would simply and visually illustrate both the flow of the gameplay and to more rigidly aid
with the implementation in the case of the Class diagram.

Language and tool used in order to model the architecture

We chose to use UML in order to best represent our architecture for several key reasons:
● It suited our choice of Object-Oriented-Programming
● It offers easy to follow visuals when the team moves on to the implementation
● In a similar vein as the last point, it allows for non-team members to easily and

visually understand our thought processes

To facilitate the creation of these diagrams, we opted to use 2 key tools, SmartDraw and
LucidChart.

● SmartDraw offered the easiest interface with which to create Structural Class
Diagrams but had the drawback of being a usually paid service. We however found
that in this case, the productivity increase offered by SmartDraw was well worth the
extra effort.

● LucidChart was used primarily to create our Behavioural Sequence Diagram. It had
the advantage over SmartDraw in this use-case as its interface lends itself to creating
a more abstract diagram. LucidChart also offers far more options to a free user in
comparison to SmartDraw which made it an obvious alternative for this case.



Behavioural Sequence Diagram

Although our initial behavioural diagram is very simple, it allowed the team to understand the
most basic interactions that the player must be able to undertake. The creation of this
behavioural diagram was vital in the creation of our structural diagram which offers far more
assistance on how the project is to be implemented.

Initial Structural Class Diagram



Final Structural Class Diagram

Note - only the Main to Game relationship is inheritance. The rest of the arrows are dotted
but this may not be entirely clear.

Systematic justification for the design of the architecture

Our choice to default to Object-Oriented-Programming for this project was primarily due to
the team all already being incredibly familiar with Object-Oriented-Programming. We
however did consider another software architecture pattern frequently used in game design,
Entity Component Design[3]. We made the following comparisons between the two:

● An ECS(Entity Component System) is less well known and thus has less
documentation present in order for us to learn to effectively utilise it

● ECS provides a major advantage in large projects such as games typically however
in our case, the simplicity of the game (there are not a huge amount of classes and
inheritances) minimises the effectiveness of ECS over OOP/

● There is no extra-work needed to be done by the team in order to learn the pattern
and therefore saving time.

Behavioural Sequence Diagram Use

This provided a high-level overview of the very basic functionality of the game. This was
used in order to create a lower-level Structural Class Diagram which in turn sped up our
implementation. This diagram was also used throughout implementation in order to test the
overall functionality and flow of the game



Structural Class Diagram Use

The structural class diagram provided a more detailed plan as to how the project should
have been implemented. Although we ended up deferring from the original diagram, it
provided a solid basis from which we were able to improve our architecture.

The evolution of our Structural Diagram from the Initial to the Concrete

Our Structural Class Diagram underwent a huge amount of change between its current
iteration and the original to the point where the two seem unrelated. The major differences
came very early when we realised we would need to rework our structure after spending
further time with libGDX in order to implement the project. The inclusions of the Game and
Screen Classes that are baked into libGDX are included to show the true architecture. One
of the primary changes is the fact that all the worktops, cooking stations and chopping
stations were merged under a single Station Class and are handled by the GameScreen
class as opposed to how they were very spread apart in the initial. The quality and accuracy
of the diagram also was improved, with far more operations and attributes present to more
accurately represent the full implementation. This structural diagram will work in conjunction
with concise and clear commenting to better allow non-team members to understand exactly
how the code is structured.

Our final concrete structural class diagram has severely cut down on the number of classes
and relations to create a simpler to understand system that has the added bonus of being
easy to read by non-team members.

Relation of the Architecture to the Requirements

Each of the classes in the concrete architecture served to fulfil the requirements we had
gained from the client.

● GameScreen - Provided most of the visuals for the game as well as setting up the
environment [FR_UI], [FR_AREA_BOUNDARIES]

● Chef - The character that the player is able to control to interact with the environment
[FR_Cook_Move], [FR_Cook_Interact]

● Station - Provided the the functionality for the cutting, cooking and ingredient stations
[FR_Cook_Interact], [FR_PREP_STATION], [FR_SERVE]

● Customer - Hold the recipes that need to be catered to [FR_UI], [FR_RANDOM],
[FR_CUSTOMER]

● Fridge - Allows the Chef to pick up the necessary ingredients [FR_PREP_STATION]
● MainMenu - creates the Main Menu for the game and allows the player to press a

key to continue [FR_TITLE_SCEEN]

Bibliography
1. https://sparxsystems.com/enterprise_architect_user_guide/16.1/modeling_languages

/behavioraldiagrams.html#:~:text=UML%20Behavioral%20Diagrams%20depict%20th
e,convey%20the%20passage%20of%20time.

2. https://www.lucidchart.com/pages/uml-class-diagram

https://sparxsystems.com/enterprise_architect_user_guide/16.1/modeling_languages/behavioraldiagrams.html#:~:text=UML%20Behavioral%20Diagrams%20depict%20the,convey%20the%20passage%20of%20time
https://sparxsystems.com/enterprise_architect_user_guide/16.1/modeling_languages/behavioraldiagrams.html#:~:text=UML%20Behavioral%20Diagrams%20depict%20the,convey%20the%20passage%20of%20time
https://sparxsystems.com/enterprise_architect_user_guide/16.1/modeling_languages/behavioraldiagrams.html#:~:text=UML%20Behavioral%20Diagrams%20depict%20the,convey%20the%20passage%20of%20time
https://www.lucidchart.com/pages/uml-class-diagram


3. https://www.simplilearn.com/entity-component-system-introductory-guide-article#:~:te
xt=OOP%20encourages%20data%20encapsulation%20while,separates%20the%20
data%20from%20behavior

4. https://creately.com/guides/class-diagram-relationships/#:~:text=Multiplicity,-Multiplicit
y&text=is%20the%20active%20logical%20association,contain%20zero%20to%20ma
ny%20passengers.

https://www.simplilearn.com/entity-component-system-introductory-guide-article#:~:text=OOP%20encourages%20data%20encapsulation%20while,separates%20the%20data%20from%20behavior
https://www.simplilearn.com/entity-component-system-introductory-guide-article#:~:text=OOP%20encourages%20data%20encapsulation%20while,separates%20the%20data%20from%20behavior
https://www.simplilearn.com/entity-component-system-introductory-guide-article#:~:text=OOP%20encourages%20data%20encapsulation%20while,separates%20the%20data%20from%20behavior
https://creately.com/guides/class-diagram-relationships/#:~:text=Multiplicity,-Multiplicity&text=is%20the%20active%20logical%20association,contain%20zero%20to%20many%20passengers
https://creately.com/guides/class-diagram-relationships/#:~:text=Multiplicity,-Multiplicity&text=is%20the%20active%20logical%20association,contain%20zero%20to%20many%20passengers
https://creately.com/guides/class-diagram-relationships/#:~:text=Multiplicity,-Multiplicity&text=is%20the%20active%20logical%20association,contain%20zero%20to%20many%20passengers

